Защита бетонных констр. (к СНиП 2.03.11-85), часть 8

Не допускается предусматривать из железобетона:

фундаменты под электролизеры при установке электролизеров на нулевой отметке или отметке ниже нулевой;

каналы, желоба и тому подобные конструкции для прокладки коммуникаций в полу отделений электролиза водных растворов солей.

Указанные конструкции следует проектировать:

для отделений электролиза водных растворов солей — из неармированного бетона, полимербетона, кислотостойкого кирпича;

для отделений электролиза расплавов солей — из неармированного бетона или из бетона с местным армированием.

Эстакады под электролизеры и фундаменты под оборудование (насосы, моечные машины и другое оборудование) в отделениях электролиза водных растворов солей рекомендуется устанавливать непосредственно на пол при сохранении сплошности гидроизоляции.

Для защиты от электрокоррозии железобетонных фундаментов зданий цехов электролиза следует предусматривать антикоррозионную защиту поверхности фундаментов не слабее, чем для слабоагрессивных сред. При наличии агрессивных грунтовых вод защита выполняется в соответствии с СНиП 2.03.11—85 и настоящим Пособием (разд. 4).

Примечания: 1. При высоком уровне грунтовых вод любой агрессивности для повышения надежности защиты железобетонных фундаментов от электрокоррозии рекомендуется предусматривать (при соответствующем технико-экономическом обосновании) устройство электроизолирующего слоя между колонной и фундаментом;

в отделениях электролиза водных растворов — омоноличиванием колонны в стакане полимерраствором на основе эпоксидных (в соответствии с «Рекомендациями по приготовлению и применению полимеррастворов на основе эпоксидных смол для защиты строительных конструкций от электрокоррозии», (Свердловск, Уральский ПромстройНИИпроект, 1985), полиэфирных, полиамидных смол; при этом электроизолирующий слой (толщиной не менее 10 мм в отвержденном состоянии) должен быть выведен выше уровня пола на высоту 300 мм;

в отделениях электролиза расплавов — укладкой плиток из диабаза, базальта, шлакоситалла на арзамит-замазке или полимеррастворе с введением добавок антипренов, а также из других материалов с учетом температурных условий.

2. При высоком уровне грунтовых вод любой агрессивности для повышения надежности защиты от электрокоррозии свайных фундаментов под оборудование рекомендуется предусматривать (при соответствующем технико-экономическом обосновании) электроизолирующий слой по верху бетонной подготовки:

в отделениях электролиза растворов — из полимерраствора (толщиной не менее 10 мм в отвержденном состоянии), рулонных материалов и т. п.;

в отделениях электролиза расплавов — из асфальта (толщиной 20 мм) и т.п.

Для защиты балок подванных эстакад отделений электролиза водных растворов солей в местах обливов должны предусматриваться козырьки из армированного винипласта, полиэтилена и тому подобных материалов или металлические гуммированные козырьки.

Если по условиям технологического процесса и монтажа оборудования при выходе из отделения электролиза водных растворов солей не может быть обеспечен разрыв пути блуждающего тока по трубопроводам и другим коммуникациям, транспортирующим электролит, должны предусматриваться мероприятия по защите от электрокоррозии железобетонных конструкций других отделений цеха и отдельно стоящих зданий и сооружений, связанных с трубопроводами с отделением электролиза.

Г. Для защиты железобетонных конструкций сооружений транспорта, электрифицированного на постоянном токе, предусматриваются требования, изложенные в данном пункте.

Для железобетонных конструкций железнодорожного транспорта должна предусматриваться установка электроизолирующих деталей и устройств для изоляции:

а) деталей крепления конструкций контактной сети от арматуры и бетона железобетонных конструкций опор контактной сети, мостов, эстакад, тоннелей и т. п. или деталей крепления от заземляемых на рельсы элементов конструкций контактной сети (щеток изоляторов, штырей и т. п.);

б) железобетонных анкеров опор контактной сети от оттяжек;

в) всех металлических конструкций (перила и т.п.), располагаемых на железобетонных сооружениях и по условиям техники безопасности заземляемых на рельсы, от арматуры сооружений;

г) арматуры железобетонных опор и фундаментов металлических опор, устанавливаемых на мостах, эстакадах и т. п., от арматуры конструкций указанных сооружений;

д) заземляющих проводников от бетона и арматуры;

е) металлических мачт светофоров и консольных металлических опор от анкерных болтов и бетона фундаментов;

ж) заземленных на рельсы металлических частей железобетонных мачт светофоров от бетона и арматуры мачт.

Электрическое сопротивление цепи заземления опор контактной сети и деталей крепления контактной сети к конструкциям мостов, эстакад, тоннелей и т. п. при приемке их в эксплуатацию должно быть не менее 10000 Ом.

Арматура конструкций железнодорожных платформ не должна иметь контактов с металлическими конструкциями и арматурой железобетонных конструкций пешеходных мостов.

Для защиты железобетонных конструкций линий трамвая:

на лежневые части блоков или лежней следует укладывать прокладки из полимерных материалов, обладающих высокими диэлектрическими свойствами;

арматура железобетонных элементов подрельсовых оснований и промежуточные рельсовые крепления не должны иметь прямого контакта с рельсами.

Для защиты железобетонных конструкций метрополитена:

отделку перегонных тоннелей и станций метрополитена следует выполнять из водонепроницаемых материалов. В случаях применения отделок из сборных железобетонных конструкций должны предусматриваться надежная гидроизоляция, исключающая обводнение тоннелей, а также смачивание внутренней поверхности тоннелей и бетона верхнего строения пути;

в местах примыкания перегонных тоннелей к вестибюлям станций метрополитена мелкого заложения должны предусматриваться швы, заполняемые бетоном, с обеспечением сплошности гидроизоляции между тоннелями и вестибюлями станций;

при необходимости применения непрерывных стержней распределительной арматуры для армированного омоноличивания элементов сборных обделок тоннелей метрополитена следует предусматривать разрывы этой арматуры, имея в виду, что длина участков омоноличивания должна быть не более 30 м;

Все железобетонные подземные коллекторы и трубопроводы, расположенные на территории депо метрополитена, должны иметь наружное защитное гидроизоляционное покрытие;

в местах пересечения линий метрополитена мелкого заложения с трамвайными путями обделка тоннелей метрополитена со стороны, обращенной к грунту, должна иметь защитное гидроизоляционное покрытие в пределах трамвайной линии и по 20 м в каждую сторону от оси пересечения;

не разрешается оставлять металлические монтажные связи между элементами обделки тоннелей метрополитена, если они создают непрерывную цепь для блуждающих токов.

Д. Мероприятия III группы защиты железобетонных конструкций от коррозии блуждающими токами заключаются в применении катодной, активной (электрохимической), протекторной, электродренажной защиты.

При проектировании активной защиты должны выполняться требования настоящего Пособия, а также ГОСТ 9.015—74*, ГОСТ 16149—70 в части требований к установкам электродренажной, катодной и протекторной защиты и требований к безопасности при проведении работ по строительству и эксплуатации этих установок.

При активной (электрохимической) защите железобетонных конструкций от электрокоррозии вся арматура этих конструкций должна соединяться между собой электросваркой или должны предусматриваться другие меры по исключению опасного влияния токов на отдельные части арматуры. Конструкции должны иметь выводы арматуры для подсоединения к ним устройств активной защиты и контрольно-измерительных пунктов.

Электрохимическая защита должна осуществляться таким образом, чтобы исключалось вредное влияние токов защиты на смежные железобетонные и металлические сооружения. Вредным влиянием на смежные сооружения считается появление опасности электрокоррозии на соседних сооружениях, ранее не требовавших защиты; изменение величины защитного потенциала, которое не может быть снято регулировкой применяемых средств защиты.

Е. Катодная защита железобетонных конструкций от электрокоррозии заключается в катодной поляризации арматуры от внешнего источника тока; при этом отрицательный полюс источника тока подключается к арматуре защищаемых конструкций, положительный — к катодному заземлению, не имеющему непосредственной электрической связи с арматурой. Катодная защита железобетонных конструкций предусматривается в случае, если эти конструкции удалены от источника блуждающих токов. Кроме того, катодная защита применяется совместно с электродренажной защитой на участках железобетонных конструкций, удаленных от точки дренирования, если включением электродренажей не удается обеспечить защиту железобетонных конструкций в пределах опасной зоны.

Протекторная защита железобетонных конструкций от электрокоррозии заключается в катодной поляризации арматуры путем подключения к ней электродов (протекторов) из металла, обладающего в данной среде более отрицательным потенциалом, чем потенциал арматуры.

Протекторная защита железобетонных конструкций должна предусматриваться в тех же случаях, что и катодная, если величина блуждающих токов может быть скомпенсирована током протектора.

Электродренажная защита железобетонных конструкций от электрокоррозии заключается в том, что блуждающие токи, попавшие на железобетонные конструкции, отводятся на источник блуждающего тока путем устройства электрической перемычки между арматурой защищаемых конструкций и источником.

Электродренажная защита должна предусматриваться для железобетонных конструкций, расположенных вблизи источников блуждающих токов (как правило, на расстоянии не более 300 — 500 м).

Ж. Для подземных железобетонных конструкций зданий и сооружений, расположенных в поле тока от постороннего источника, рекомендуются следующие виды активной защиты:

для трубопроводов, коллекторов, протяженных железобетонных фундаментов и т. п. — электродренажная, катодная или протекторная защита (прил. 11);

для железобетонных заглубленных и полузаглубленных резервуаров — катодная и протекторная защита.

Примечания: 1. При заводском изготовлении железобетонных труб необходимо предусматривать специальные выводы арматуры или закладные детали, соединенные с арматурой, для устройства электрических перемычек между арматурой смежных секций труб.

2. В каждой секции железобетонных коллекторов должны оставляться специальные выводы арматуры для устройства электрических перемычек между арматурой смежных секций коллекторов.

3. При катодной и протекторной защите железобетонных резервуаров для создания электрического контакта всех витков арматуры между собой по периметру резервуара должна предусматриваться установка вертикальных стальных шин, а при многорядном размещении арматуры соединение витков арматуры между собой должно выполняться путем установки основных и дополнительных шин.

И. В отделениях электролиза при невозможности устранения в процессе эксплуатации утечки тока на отдельные конструкции рекомендуется предусматривать электродренажную защиту:

для подванных железобетонных конструкций отделений электролиза водных растворов, заключающуюся в том, что металлические основания изоляторов последовательно расположенных электролизеров соединяются между собой металлическими перемычками, привариваемыми к основаниям изоляторов;

для железобетонных фундаментов при попадании блуждающих токов на арматуру фундаментов с надземной части металлических и железобетонных конструкций, заключающуюся в том, что арматура фундаментов соединяется металлическими перемычками с металлическими электродами, устанавливаемыми в грунт вокруг фундамента. При этом для повышения надежности защиты между заземляющими электродами и арматурой фундамента может устанавливаться вентильная перемычка.

6.3 (2.71—2.72). Способы защиты от действия переменного тока при использовании железобетонных конструкций в качестве заземляющих устройств заключаются в соединении арматуры всех элементов конструкций (а также закладных деталей, устанавливаемых в железобетонные колонны для присоединения электрического технологического оборудования) в непрерывную электрическую цепь по металлу путем сварки арматуры или закладных деталей, соприкасающихся элементов конструкций (при этом не должна меняться расчетная схема работы конструкций).

Не допускается использование в качестве заземлителей железобетонных фундаментов, подвергающихся воздействию сред средней и сильной степени агрессивного воздействия, а также железобетонных конструкций для заземления электроустановок, работающих на постоянном электрическом токе.

Для защиты от электрокоррозии железобетонных конструкций сооружений рельсового транспорта, электрифицированного на переменном токе, следует предусматривать установку электроизолирующих деталей и устройств, обеспечивающих электрическое сопротивление не менее 10000 Ом цепи заземления опор контактной сети и деталей крепления контактной сети к элементам конструкций мостов, эстакад, тоннелей и т. п. В этом случае опасность электрокоррозии железобетонных конструкций в период эксплуатации не устанавливается, так как указанное электрическое сопротивление, при котором отсутствует опасность электрокоррозии, обеспечивается при выполнении требований, необходимых для нормальной работы рельсовых цепей автоблокировки.

7. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ОБОСНОВАНИЯ ВЫБОРА ЭФФЕКТИВНЫХ ПРОЕКТНЫХ РЕШЕНИЙ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ

7.1. При проектировании защиты от коррозии железобетонных конструкций выбор конструктивных решений, средств и способов защиты в зависимости от вида, степени и условий агрессивного воздействия должен проводиться на основе оценки технико-экономической целесообразности их применения в конкретных условиях строительства и эксплуатации. Основной технической задачей при этом является учет функционального назначения производственных зданий и сооружений при обеспечении нормальной эксплуатации размещаемого технологического оборудования и машин в течение длительного срока службы и соответствующих условий производственной среды для работающих.

При сравнении рекомендуемых вариантов защиты следует учитывать периодичность возобновления мер вторичной защиты конструкций, освоение промышленного выпуска и порядок поставки коррозионно-стойких материалов для конкретных объектов строительства. Примерные сроки службы (периодичность возобновления) антикоррозионной защиты поверхностей конструкции в зависимости от условий эксплуатации приведены в табл. 26.





Таблица 26


Конструктивные элементы и способы защиты

Сроки службы защиты (лет) при степени агрессивности воздействия среды


слабой

средней

сильной

Лакокрасочные покрытия:




химстойкие нетрещиностойкие

6

4

3

» трещиностойкие

10

7

5

Покрытия для защиты закладных металлических деталей и стыковых соединений:




лакокрасочные

6

4

3

металлические

15

10

8

комбинированные

20

15

10

Футеровка и облицовка химстойкими штучными материалами

13

10

8

Пленочные и мастичные (толстослойные) защитные покрытия

12

9

7

Гидроизоляция (рулонная и обмазочная) и штукатурка

7

4

3

Покрытия полов производственных зданий:




цементные и бетонные

10

8

4

асфальтовые и асфальтобетонные

8

5

3

керамические и клинкерные

15

13

10

полимербетонные и полимерные

20

18

15

Примечание. Указанные сроки службы следует уточнять по результатам натурных наблюдений и экспериментальных исследований.

Предусматриваемые в проекте меры первичной и вторичной защиты должны обеспечивать указанные в табл. 27 межремонтные сроки службы (периодичность капитальных ремонтов) бетонных и железобетонных конструкций — при различных условиях эксплуатации в агрессивных средах.

Таблица 27



Конструкции

Периодичность капитального ремонта (лет) при степени агрессивности воздействия среды


слабой

средней

сильной

Фундаменты массивные

60

40

35

Элементы сборных фундаментов (в том числе сваи, балки)

50

30

25

Стеновые панели и блоки

20

18

15

Колонны и стойки

50

45

40

Фермы, балки, ригели и связи

30

23

18

Плиты покрытий и перекрытий

20

13

15

Капитальным ремонтом считается ремонт, при котором производятся восстановление или частичная замена изношенных за межремонтный срок службы строительных конструкций, состояние которых снижает эксплуатационные характеристики зданий и сооружений или их отдельных частей.

Приведенные сроки возобновления вторичной защиты и периодичность капитальных ремонтов конструкций следует рассматривать как минимальные при соблюдении действующих правил проектирования, строительства и эксплуатации производственных зданий в агрессивных средах.

При применении новых коррозионно-стойких материалов и средств антикоррозионной защиты с использованием достижений науки, техники и передового опыта они могут быть повышены до оптимальных с учетом ожидаемой народнохозяйственной экономической эффективности.

7.2. Методика определения экономической эффективности антикоррозионной защиты строительных конструкций предусматривает сравнение совокупных капитальных вложений и эксплуатационных расходов по вариантам защиты, приведенных к годовой размерности с учетом фактора времени.

Оптимальные меры защиты от коррозии с точки зрения экономичности выявляются сопоставлением приведенных затрат различных вариантов антикоррозионных мероприятий.

Приведенные затраты по каждому из сравниваемых вариантов антикоррозионной защиты учитываются а сфере изготовления изделий и деталей, транспортирования и монтажа конструкций, возведения зданий и сооружений, а также затрат по последующей их эксплуатации.

Приведенные затраты (в руб.) рассчитываются на единую натуральную единицу измерения, характеризующую сравниваемые строительные конструкции или способ антикоррозионной защиты (шт., м3 , м2 , м, т).

Из рассматриваемых вариантов защиты от коррозии наиболее экономичным (оптимальным) следует принимать тот, при котором суммарные приведенные затраты будут наименьшими.

Величина экономического эффекта при сравнении вариантов антикоррозионной защиты конструкций определяется по формуле

Э = [(Зн1 + Зэ1 )   (Зн2 + Зэ2 )] А2 , (1)

где Зн1 и Зн2 — приведенные затраты, осуществляемые до начала эксплуатации зданий или сооружений, по сравниваемым вариантам защиты; Зэ1 и Зэ2 — то же, осуществляемые в процессе эксплуатации; А2 объем (количество) или площадь поверхности конструкций с эффективной защитой, приходящиеся на проектируемый строительный объект.

7.3. При оценке экономической эффективности антикоррозионной защиты на предварительных стадиях проектирования приведенные затраты для каждого из сравниваемых вариантов рекомендуется определять по формуле

, (2)

где Зм(с) — приведенные капитальные вложения в сопряженные отрасли промышленности, изготавливающие и поставляющие используемые для антикоррозионной защиты материалы; n —количество материалов, отличающихся по виду или расходу в сравниваемых вариантах защиты; Сд — стоимость конструкций «в деле» без защиты от коррозии; Сз — проектная стоимость антикоррозионной зашиты (Зм(с) , Сд и Сз принимаются по усредненным (удельным показателям, приведенным в табл. 1 прил. 12); Ск.р. — затраты на один капитальный ремонт; Сз.к. — затраты на возобновление вторичной защиты конструкций от коррозии (Ск.р. и Сз.к. принимаются по ориентировочным данным табл. 2 прил. 12); Сп.о. — народнохозяйственные потери, связанные с простоями размещенного в здании технологического оборудования при проведении ремонтов строительных конструкций.

Для учета различий вытекающих из разновременности рассматриваемых в формуле (2) затрат и приведения этих затрат к одному моменту времени (база приведения), используется коэффициент приведения a t , определяемый по формуле

a t = (l + E)t . (3)

где Е  — норматив приведения разновременных затрат, принимаемый 0,08 — 0,1; t — время в годах между моментом осуществления затрат и базой приведения.

За базу приведения принимается начало первого года эксплуатации здания и сооружения.

Как видно из формулы (2), затраты, осуществляемые до начала эксплуатации, приводятся к базе приведения умножением на коэффициент a t , а эксплуатационные затраты делятся на соответствующий им по времени коэффициент a t . При нормативных сроках строительства от 1 до 4 лет коэффициенты a t равны 1,1; 1,21; 1,33 и 1,46.

Значения коэффициентов приведения эксплуатационных затрат l/ a t = l/(l + E)t при нормативе Е = 0,1 указаны в табл. 28.

Таблица 28

Единицы

Десятки лет

лет

0

1

2

3

4

5

0

1

0,385

0,149

0,057

0,022

0,008

1

0,909

0,35

0,135

0,052

0,02

0,007

2

0,826

0,318

0,123

0,047

0,018

0,007

3

0,751

0,29

0,111

0,043

0,016

0,006

4

0,683

0,263

0,101

0,039

0,015

0,005

5

0,621

0,239

0,092

0,035

0,013

0,005

6

0,564

0,217

0,084

0,032

0,012

0,004

7

0,513

0,198

0,076

0,029

0,011

0,004

8

0,466

0,18

0,069

0,026

0,01

0,003

9

0,424

0,163

0,063

0,024

0,009

0,003

Примечание. При t = 45 лет l/ a t = 0,013; при t = 25 лет l/ a t = 0 ,092; при t от 60 до 69 лет l/ a t = 0,002; при t = 7 0 лет и более l/ a t = 0,001.

Количество капитальных ремонтов в формуле (2) определяется величиной g к.р. — 1 = Тс /Tк.p. — 1 (Тс  — нормативный срок службы здания в годах; Тк.р. — периодичность капитального ремонта конструкций), а количество возобновлений вторичной защиты от коррозии ¾ величиной g з.к. — 1 = Тс /Tз.к. — 1 (Тз.к.  — сроки службы вторичной защиты).

7.4. В отдельных отраслях промышленности при проведении капитальных ремонтов строительных конструкций возможны простои размещенного в производственных зданиях технологического оборудования. Это вызывает неполное использование основных фондов предприятия и соответствующие народнохозяйственные потери (косвенные потери от коррозии).

Величина указанных в последнем члене формулы (2) потерь от простоя оборудования Сп.о. может быть определена по формуле

Сп.о. = Ен Коб Тп.об , (4)

где Ен — нормативный коэффициент эффективности капитальных вложений; Коб — проектная стоимость технологического оборудования или машин, простаивающих при капитальном ремонте строительных конструкций (принимается по табл. 4 прил. 12); Тп.об — время в годах, в течение которого простаивает основное технологическое оборудование цеха (принимается условно равным продолжительности капитального ремонта конструкции (см. табл. 3 прил. 12).

Поскольку расчеты приведенных затрат по сравниваемым вариантам антикоррозионной защиты проводятся на натуральную единицу измерения конструкций, необходимо иметь соответствующие технические проектные данные. Для предварительных расчетов рекомендуется использовать приведенные в табл. 29 усредненные показатели по сборным железобетонным конструкциям одноэтажного производственного здания.

Таблица 29

Конструкции

Объем сборных конструкций, в м3 на 1 м2 здания

Площадь здания, в м2 на 1 м3 бетона конструкции

элементы фундаментов

0,04

25

Колонны, стойки

0,015

67

Подстропильные фермы и балки

0,02

50

Стропильные фермы и балки

0,03

33

Плиты покрытий

0,06

17

Стеновые панели

0,02

50

Использование усредненных показателей позволяет на предварительной стадии проектирования оценить наиболее экономичный вариант антикоррозионной защиты или определить оптимальные межремонтные сроки службы строительных конструкций при минимуме приведенных затрат. Стоимость используемых при антикоррозионной защите строительных конструкций материалов и изделий может быть уточнена по действующим прейскурантам оптовых цен.

7.5. На стадии рабочего проектирования уточнение экономической эффективности защиты конструкций от коррозии достигается за счет увеличения количества учитываемых технико-экономических параметров.

Конкретизируются принятые объемно-планировочные и конструктивные решения, назначение проектируемого предприятия, характер и годовой объем выпускаемой им продукции, территориальное расположение объекта и поставщиков строительных конструкций и материалов, механовооруженность строительной или ремонтно-строительной организации, применяемые средства механизации монтажных и антикоррозионных работ и т. п.

В составе эксплуатационных затрат дополнительно учитываются затраты на текущие ремонты строительных конструкций, ежегодные затраты по обслуживанию специальных средств защиты и техническому содержанию зданий и сооружений. Расширяется круг учитываемых прямых и косвенных потерь от коррозии строительных конструкций.

Технико-экономические обоснования выбора эффективного варианта защиты от коррозии должны базироваться на соответствующих расчетах, выполняемых по «Руководству по определению экономической эффективности повышения качества и долговечности строительных конструкций» (М.: Стройиздат, 1981), методическим материалам СЭВ по стандартизации «Защита от коррозии в строительстве. Методы определения экономической эффективности» (ММ 6-83), «Защита от коррозии в строительстве. Метод определения экономических потерь» (ММ 10-85). Ниже приводятся примеры технико-экономических расчетов.

Пример 1. Требуется определить экономическую эффективность антикоррозионной защиты поверхности железобетонных стропильных балок одноэтажного промышленного здания на предварительной стадии проектирования.

Общая производственная площадь здания химического производства 10000 м2 , степень агрессивного воздействия среды —среднеагрессивная, срок строительства здания — 2 года, нормативный срок службы здания — 80 лет. Балка двутаврового сечения пролетом 12 м по серии 1.462-1 (вып. 1), под расчетную нагрузку 65 МПа, объем бетона 2 м3 , общий расход стали — 242 кг, площадь поверхности балки, защищаемая лакокрасочным покрытием, — 20 м.

Система антикоррозионной зашиты балок лакокрасочными покрытиями представлена в двух вариантах:

1 — защитное нетрещиностойкое химически стойкое покрытие из одного слоя грунтовки лаком ХВ-784 толщиной 15 мкм (расход лака 0,194 кг/м2 ) и семи покрывных слоев эмалью ХВ-785 с общей толщиной покрытия 140 мкм (расход эмали 1,13 кг/м2 ).

2 — защитное трещиностойкое покрытие из двух слоев грунтовки лаком ХП-734 толщиной 30 мкм (расход лака 0,4 кг/м2 ) и восьми покрывных слоев эмалью ХП-799 (расход эмали 1,3 кг/м2 ).

Способ нанесения лакокрасочных покрытий в обоих вариантах ¾ пневматическое напыление пистолетом-краскораспылителем 0—45.

Трещиностойкое покрытие на основе хлорсульфированного полиэтилена ХП обладает большими защитными свойствами и позволяет увеличить межремонтный срок службы конструкций (до 30 лет).

По табл. 26 и 27 ориентировочные сроки службы защитных лакокрасочных покрытий для среднеагрессивной среды составляют Тз.к.1 = 4 года и Тз.к.2 = 7 лет, а периодичность капитальных ремонтов Тк.р.1 = 23 года и Тк.р.2 = 30 лет.

Так как в сравниваемых вариантах защиты применяемые материалы отличаются по виду и расходу, определяем приведенные капитальные вложения в производство лакокрасочных материалов с учетом их расхода на одну балку (20 м2 поверхности), коэффициента эффективности капитальных вложений (Ен = 0,15) и данных удельных капитальных вложений по табл. 1 прил. 12 (пп. 3.2 и 3.4; пп. 3.3 и 3.5):

См(с)1 = 0,15× 20× 0,715× 0,194 + 0,15× 20× 0,725× 1,13 = 2,88 руб.;

См(с)2 = 0,15× 20× 0,875× 0,4 + 0,15× 20× 0,9× 1,3 = 4,56 руб.

Стоимость стропильной балки «в деле» (без защиты от коррозии) принимаем по п. 1.3 табл. 1 прил. 12:

Сд1 = Сд2 = 106 руб.

Проектную стоимость лакокрасочной защиты в зависимости от вида материалов принимаем по табл. 1 прил. 12 (пп. 3.2 и 3.4; пп. 3.3 и 3.5) с учетом расхода материалов и площади защиты (20 м2 ):

Сз1 = 20 (0,194× 0,6 + 1,13× 0,79) = 20,18 руб.;

Сз2 = 20 (0,4× 0,735 + 1,3× 1) = 31,88 руб.

Народнохозяйственные потери от простоя расположенного в здании технологического оборудования определяем по формуле (4), пользуясь данными табл. 29 и прил. 12.

По табл. 4 прил. 12 ориентировочная стоимость технологического оборудования для предприятий химической промышленности на 1 м2 общей площади производственных зданий Коб = 148 руб.

По табл. 29 на 1 м2 бетона подстропильных балок приходится 50 м2 производственной площади здания, т.е. в рассматриваемом примере на одну балку (объемом 2 м3 ) приходится 100 м2 площади здания. По табл. 3 прил. 12 ориентировочная продолжительность капитального ремонта балок на 1 м3 бетона конструкции составляет 0,013 года, т.е. в нашем случае (при объеме бетона в балке 2 м3 ) равна 0,026 года.

Таким образом, величина потерь по формуле (4) составляет

Спо = 0,15× 148× 100× 0,026 = 57,72 руб.

Обобщенные исходные параметры для расчета экономического эффекта на одну балку приведены в табл. 30.

Закрыть

Строительный каталог