Сооружения для очистки воды (к СНиП 2.04.02-84), часть 7

Параметры промывки, интенсивность и продолжительность принимаются такими же, как в установках для очистки поверхностных вод.

14.25. Обесфторивание воды:

14.25.1. Технология обесфторивания воды предусматривает обработку ее коагулянтом, поэтому режим работы установки в этом случае в основном аналогичен режиму осветления поверхностных вод.

14.25.2. Дозы коагулянта, необходимые для обесфторивания воды, определяют пробным коагулированием. При отсутствии данных пробного коагулирования их определяют величиной требуемого остаточного фтора.

При значении остаточного фтора 1,5 мг/л (IV климатическая зона) доза коагулянта Дк , мг/л по Аl2 О3 , определяется по формуле

Дк = 9,2 (Фисх - 1,5) , (62)

где Фисх - исходное содержание фтора в воде, мг/л;

при значении остаточного фтора 1,2 мг/л (II и III климатические зоны) - по формуле

Дк = 12,9 (Фисх - 1,2) , (63)

при значении остаточного фтора 0,7 мг/л (I климатическая зона) - по формуле

Дк = 23?3 (Фисх - 0,7) . (64)

14.25.3. Для интенсификации процесса коагуляции следует применять флокулянт - полиакриламид. Дозы ПАА при отсутствии данных пробного флокулирования рекомендуется принимать 0,3—0,5 мг/л (большие - при более высоких значениях исходного фтора в воде).

ПАА следует вводить после сетчатого фильтра установки с разрывом во времени от ввода коагулянта 0,5—1 мин.

14.25.4. Производительность установок, работающих в режиме обесфторивания воды, определяют в зависимости от значений исходного и требуемого остаточного фтора в воде с учетом данных табл. 21.

Таблица 21

Остаточный

Исходное содержание фтора, мг/л

фтор, мг/л

2,5-3

3-4

4-5

5-6

1,5

1,6

1,4-1,6

1,0-1,4

0,8-1,0

1,2

1,4

1,2-1,3

0,8-1,1

0,5-0,7

0,7

1,0-1,2

0,7-1,0

-

-

14.25.5. Толщину слоя песчаной загрузки фильтра рекомендуется принимать равной 1,5-1,8 м, крупность загрузки — 0,5-1,5 мм при эквивалентном диаметре 0,7-0,8 мм и коэффициенте неоднородности 2,0-3,0.

Параметры промывки принимают аналогичными режиму работы установок при очистке поверхностных вод.

14.25.6. Определение расхода растворов реагентов qp , л/ч, и подбор требуемых дозировочных устройств следует выполнять по формуле

, (65)

где Q расч - производительность установки, м/ч;

Др - доза реагента, г/м ;

Р - концентрация раствора (суспензии) реагента, %.

При дозировании реагентов в обрабатываемую воду рекомендуется принимать следующие концентрации растворов или суспензий, %:

раствора коагулянта по Аl2 О3 - 1-2;

суспензии известкового молока по СаО - 3-5;

раствора кальцинированной соды по Na2 CO3 - 5-8;

раствора хлорной извести по активному хлору (или гипохлорита кальция) - 0,5-2;

электролитического хлорреагента по активному хлору - 1.

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
И АВТОМАТИКА

14.26. Контрольно-измерительная аппаратура установки включает: манометры для измерения потери напора в загрузке, пробоотборники исходной, осветленной и фильтрованной воды; ротаметры для измерения и регулирования подачи исходной воды и воздуха (при работе в режиме обезжелезивания воды); водомер и ротаметр для измерения и регистрации производительности установки; поплавковые устройства баков. При соответствующем обосновании рекомендуется устанавливать на трубопроводе фильтрата рН-метры.

14.27. Для обеспечения работы установки в автоматическом режиме следует предусматривать устройство перед фильтрами контактных манометров и электрифицированных задвижек с реле времени промывки, а также устанавливать в водонапорной башне и промежуточном баке уровнемеры, регулирующие периодическое включение и отключение насосов и дозаторов реагентов в зависимости от режима работы системы водоснабжения.

Примеры расчета технологических режимов работы установок
для очистки подземных вод

Пример 1. Расчет режима работы установки при обезжелезивании воды. Водопотребление объекта - 300 м3 /сут. Подземная вода характеризуется следующими основными показателями: рН — 6,1; железо общее — 19,6 мг/л, в том числе связанное (органическое) — 2,1 мг/л; окисляемость — 20,2 мг/л; содержание свободной углекислоты — 130 мг/л; общая жесткость — 3,4 мг-экв/л. В качестве щелочного реагента предполагается использование извести. Режим работы станции характеризуется промывкой не чаще одного раза в сутки.

В соответствии с табл. 18 принимаем дозу извести 3 мг-экв/л по СаО (78 мг/л).

В соответствии с табл. 19 принимаем коэффициент изменения производительности установки 0,9. При использовании серийной установки «Струя-400» ее расчетная производительность при обезжелезивании данной воды равна:

Q расч = 0,9 × 400 = 360 м3 /сут > 300 м3 /сут (13,5 м3 /ч).

Производительность дозировочных насосов известкового молока (см. п. 14.25.6) равна:

л/ч .

Принимаем для дозирования известкового молока насосы-дозаторы НД-25/40 или ПД-40/25.

Пример 2. Расчет режима работы установки при умягчении воды. Водопотребление объекта — 550 м3 /сут. Подземная вода характеризуется следующими основными показателями: рН — 7,2; вкус, запах — 3-4 балла (сероводород); общая жесткость — 13,5 мг-экв/л; карбонатная жесткость — 6,85 мг-экв/л; кальций — 80 мг-экв/л; магний - 5,5 мг-экв/л; свободная углекислота — 1,5 мг-экв/л; общее солесодержание — 930 мг/л; железо общее — 2,3 мг-экв/л; требуемая остаточная жесткость — 7 мг-экв/л. Режим работы станции с промывкой не чаще 2 раз в сутки.

В соответствии с черт. 44 (случай а) :

Жи = Жо - Жк = 13,5 — 6,8 = 6,7 мг-экв/л;

Жо — [Ca2+ ] = 13 ,5 — 8,0 = 5,5 мг-экв/л ,

т.е. Жт > Жо — Жк ; Жт > Жо — [Ca2+ ] .

Таким образом, для умягчения воды до требуемой остаточной жесткости необходима декарбонизация ее известью.

Дозу извести по СаО определим по формуле (52) :

Ди = [ СО2 ] + Жо [Ca2+ ]  — Жт = 1,5 + 13,5 — 7,0 = 8 мг-экв/л =

= 224 мг/л по СаО.

В соответствии с табл. 20 коэффициент изменения производительности установки составляет 1,5. При использовании серийной установки «Струя-400» ее расчетная производительность при умягчении воды составит

Q расч = 1,5 × 400 = 600 м3 /сут > 550 м3 /сут.

Производительность дозировочных насосов известкового молока (см. п. 14.25.6) равна:

q р = 0,1 × 24,7 × 224 × 1/5 = 55,3 л/ч.

Принимаем для дозирования известкового молока насосы-дозаторы НД-63/16 или НД-100/10.

Пример 3. Расчет режима работы установки при обесфторивании воды. Водопотребление объекта — 240 м3 /сут. Подземная вода характеризуется следующими основными показателями: исходное содержание фтора — 3,4 мг/л; необходимый остаточный фтор — 1,2 мг/л.

В соответствии с табл. 21 коэффициент изменения производительности установки составляет 1,25. При использовании серийной установки «Струя-200» ее расчетная производительность при обесфторивании воды составит

Q расч = 1,25 × 200 = 250м3 /сут > 240м3 /сут (10,0 м3 /ч).

Дозу коагулянта сернокислого алюминия определим по формуле (63):

Д = 12,9 (3,4 - 1,2) = 28мг/л.

Производительность дозировочных насосов коагулянта (см. п. 14.25.6) равна:

л/ч .

Следовательно, принимаем насосы-дозаторы НД-25/40 или НД-40/25.

15. ЭЛЕКТРОЛИЗНЫЕ УСТАНОВКИ
ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ

УСТАНОВКИ ТИПА ЭН ДЛЯ ПОЛУЧЕНИЯ ГИПОХЛОРИТА НАТРИЯ

15.1. Электролизные установки типа ЭН предназначены для получения обеззараживающего реагента - гипохлорита натрия путем электролиза раствора поваренной соли.

Гипохлорит натрия (NaClO) - сильный окислитель, по своей бактерицидной эффективности и влиянию на технологические показатели качества обрабатываемой воды равноценен действию жидкого хлора, хлорной извести и порошкообразного гипохлорита кальция.

Установки могут применяться для обеззараживания не только питьевой воды, но и промышленных и бытовых сточных вод, при обработке воды в плавательных бассейнах и т. п.

15.2. Отечественная иромышленность серийно выпускает электролизные установки производительностью 1, 5 и 25 кг/сут активного хлора (марки ЭН-1, ЭН-5, ЭН-25 соответственно). В состав электролизной установки входят: узел для растворения соли; электролизер с зонтом вытяжной вентиляции; бак-накопитель готового раствора; выпрямительный агрегат для питания электролизера; шкаф управления и запорная арматура. Все технологическое оборудование поставляется заводом-изготовителем в комплекте с установкой.

15.3. Электролизные установки типа ЭН работают по следующей схеме. В растворный бак загружают поваренную соль, заливают водопроводную воду и с помощью насоса перемешивают до получения насыщенного раствора поваренной соли (230-310 г/л NaCl). Приготовленный раствор насосом по трубопроводу подают в электролизер, где разбавляют водой до рабочей концентрации 100—120 г/л NaCl . Затем включают выпрямительный агрегат. Процесс электролиза ведут до получения требуемой концентрации активного хлора, после чего готовый раствор сливают в бак-накопитель и весь цикл повторяют.

15.4. Техническая характеристика установок приведена в табл. 22.

Таблица 22

Характеристика узла или установки

Электролизер


ЭН-1

ЭН-5

ЭН-25

Производительность по активному хлору, кг/сут

1,0

5,0

25

Удельный расход соли на 1 кг активного хлора, кг

12-15

12-15

8-9

Продолжительность цикла электролиза, ч

0,75-1,0

8-9

10-12

Рекомендуемое число циклов в сутки

2-4

2

2

Концентрация активного хлора в растворе, г/л

5-7

6-8

10-12

Рабочее напряжение на ванне, В

40-42

40-42

55-65

Рабочий ток, А

55-65

55-65

130-140

Удельный расход электроэнергии на 1 кг активного хлора, кВт× ч

7-9

7-9

8-10

15.5. На каждом объекте целесообразно устанавливать не более двух-трех параллельно работающих установок, из которых одна должна быть резервной.

15.6. При проектировании электролизно-хлораторной установки рекомендуется использовать типовые и технорабочие проекты, выполненные Гипрокоммунводоканалом и ЦНИИЭП инженерного оборудования. Проекты разработаны для очистных сооружений с расходом хлора 1-200 кг/ч.

15.7. Установки с комплектом технологического оборудования размещают в здании, в котором предусмотрены помещение для электролизеров, насосно-дозировочное отделение, электрощитовая, венткамера и служебное помещение.

В помещении для электролизеров располагаются электролизные установки с системой вытяжной вентиляции, в насосно-дозировочном отделении размещаются рабочие баки с дозирующими устройствами и насосное оборудование.

Помещение электрохозяйства предназначено для систем управления и контроля за работой электролизеров и насосов.

В проектах предусмотрено мокрое хранение соли с расположением растворных баков и баков-накопителей гипохлорита натрия вне зданий.

Допускается располагать установки на свободных площадях существующих помещений. В этом случае растворный узел предпочтительно размещать на первом этаже здания или в подвальных помещениях вблизи от склада хранения соли. Электролизер рекомендуется устанавливать в отдельном помещении. Возможно совместное расположение в одном помещении растворного узла, электролизера и бака-накопителя гипохлорита натрия. Раствор гипохлорита натрия должен поступать в бак-накопитель самотеком. Перепад высоты между сливным вентилем электролизера и входным патрубком бака-накопителя должен быть не менее 0,3 м.

Помещения должны быть обеспечены подводкой водопроводной воды для приготовления раствора соли и промывки растворного бака, электролизера, бака-накопителя и соединяющих их магистралей после работы. Соответственно должен быть обеспечен слив промывной воды в систему водоотведения.

15.8. Выпрямительный агрегат, переполюсатор, шкаф управления и систему аварийной сигнализации целесообразно устанавливать в диспетчерском пункте. Шкаф управления рекомендуется крепить на стене в зависимости от планировки помещения и размещения оборудования.

Монтаж электрооборудования следует производить согласно электрической схеме установки и «Правилам эксплуатации электрических установок».

15.9. Разводку трубопроводов необходимо выполнять из антикоррозионного материала, разрешенного Минздравом СССР к применению в хозяйственно-питьевом водоснабжении.

УСТАНОВКИ ТИПА «ПОТОК»
ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ ПРЯМЫМ ЭЛЕКТРОЛИЗОМ

15.10. Обеззараживание воды прямым электролизом является разновидностью хлорирования. Сущность этого метода состоит в том, что под действием электрического тока из хлоридов, находящихся в обрабатываемой воде, образуется в основном активный хлор, который и обеззараживает воду непосредственно в потоке.

Установки типа «Поток» предназначены для обеззараживания природных вод, отвечающих требованиям ГОСТ 2874-82 при содержании хлоридов не менее 20 мг/л и жесткости не более 7 мг-экв/л.

15.11. Установка работает следующим образом. Обрабатываемую воду под давлением подают снизу вверх в электролизер. Включают выпрямительный агрегат и на токоподводы электродов подают постоянное напряжение. Силу тока подбирают таким образом, чтобы величина остаточного хлора в обработанной воде соответствовала требованиям ГОСТ 2874-82.

15.12. Техническая характеристика установки, серийно выпускаемой отечественной промышленностью, приведена в табл. 23.



Таблица 23

Показатель

Значение показателя

Производительность*, м3

15- 100

Номинальная мощность, кВт

7,6

Напряжение питания, В

380 (± 10 %)

Рабочее напряжение на элекьолдах, В

6- 12

Рабочий ток, А

Не более 600

Давление в камере, Па (кгс/см2 )

0,5 (5)

* Зависит от содержания хлоридов, сульфатов и требуемой дозы хлора на обеззараживание воды.

Для конкретного объекта производительность установки может быть определена по номограмме (черт. 45). Взаимное влияние сульфатов и хлоридов на процесс электролиза определяется коэффициентом Кс (точка 1). Данные по концентрации хлоридов и величине коэффициента Кс позволяют установить выход хлора по току (точка 2). Выход хлора по току при заданной токовой нагрузке (точка 3) и требуемая доза хлора (точка 4) определяют максимально возможную производительность установки (точка 5) на объекте применения.

Черт. 45. Номограмма для определения производительности
установки типа «Поток»

15.13. Независимо от применяемых схем водоснабжения места расположения установок для обеззараживания прямым электролизом обусловлены сущностью метода: они должны всегда располагаться перед контактными емкостями (резервуарами чистой воды, водонапорными башнями и т. п.), которые, так же как в случае обычного хлорирования, позволяют обеспечивать необходимое время контакта.

15.14. Установки должны эксплуатироваться в помещении с температурой от 1 до 35 °С и относительной влажностью до 80 %. На одном объекте целесообразно устанавливать не более 2—3 параллельно работающих установок, из которых одна резервная.

15.15. При наличии в схеме водоснабжения установки для очистки воды (типа «Струя», установки или станции для обезжелезивания и др.) установки типа «Поток» целесообразно располагать в тех же помещениях.

15.16. При использовании подземных вод, не требующих специальной очистки и подаваемых в сборные резервуары, возможны различные варианты размещения аппаратуры. При наличии над скважиной павильона установку наиболее целесообразно размещать именно в нем. Когда павильон отсутствует или вода подается в сборный резервуар от нескольких скважин, аппаратуру можно монтировать в насосной (второго подъема) или в небольшом отдельно стоящем здании. В тех случаях, когда вода поступает в водонапорную башню, а у ее основания имеется помещение, установку можно располагать на этих площадях.

Во всех случаях размещения установки электролизер необходимо устанавливать на обводной линии основной магистрали, подающей воду в контактный резервуар.

На отрезке основной магистрали между подсоединениями обводной линии необходимо устанавливать задвижку. Подводящий трубопровод оборудуется измерителем расхода подаваемой воды.

15.17. Монтаж блока электропитания установок следует производить в помещении согласно электрической схеме и ПУЭ. С целью снижения падения напряжения в соединительных кабелях расстояние между выпрямителем и электролизером должно быть по возможности минимальным.

15.18. При привязке и монтаже установок можно пользоваться «Схемами компоновок установок для обеззараживания природных и сточных вод прямым электролизом», разработанными Гипрокоммунводоканалом.

16. МЕХАНИЧЕСКОЕ ОБЕЗВОЖИВАНИЕ ОСАДКОВ,
ОБРАЗУЮЩИХСЯ НА СТАНЦИЯХ ВОДОПОДГОТОВКИ

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

16.1. Рассматриваемые методы и устройства предназначены для механического обезвоживания осадков, образующихся на станциях осветления, обезжелезивания и умягчения природных вод, с использованием серийно выпускаемого отечественного оборудования.

16.2. Механическое обезвоживание может найти применение при обработке осадков, образующихся на станциях осветления природных вод, характеризуемых мутностью до 400 мг/л.

16.3. Механическое обезвоживание осадков природных вод рекомендуется применять для осадков:

образующихся на станциях обезжелезивания и умягчения подземных вод, - при отсутствии свободных территорий, высоком уровне грунтовых вод и большом количестве атмосферных осадков;

поверхностных природных вод - при отсутствии свободных территории и условий для естественного замораживания и оттаивания осадков.

16.4. При дальнейшем рассмотрении технологических схем и установок для обработки осадков принята следующая условная классификация вод поверхностных водоисточников по их мутности и цветности (табл. 24) .

Таблица 24

Воды

Показатель качества

Значение показателя

Маломутные

Мутность, мг/л

£ 10

Пониженной мутности

То же

10- 50

Средней мутности

«

50- 100

Повышенной мутности

«

100- 250

Мутные

«

250- 1500

Высокомутные

«

> 1500

Малоцветные

Цветность, град

£ 35

Цветные

То же

35- 120

Высокоцветные

«

> 120

ПРИНЦИПИАЛЬНАЯ СХЕМА ТЕХНОЛОГИЧЕСКОГО
ПРОЦЕССА И ОСОБЕННОСТИ УСТАНОВОК

16.5. Разбавленный осадок из отстойников или осветлителей со взвешенным осадком, а также промывные воды фильтровальных установок следует направлять в сооружения для их усреднения и осветления.

Осадок, выделенный в указанных сооружениях, надлежит направлять на сооружения для его дальнейшего механического обезвоживания.

При необходимости следует предусматривать промежуточную емкость для выравнивания расхода осадка.

16.6. С целью интенсификации процесса осветления промывных вод следует добавлять полиакриламид (ПАА) из расчета 1—1,5 мг/л.

16.7. Выбор оборудования для механического обезвоживания осадков природных вод определяется их исходным качеством. Для обезвоживания гидроксидных осадков поверхностных вод следует в основном применять фильтр-прессы типа ФПАКМ или ФПАВ. Вакуум-фильтры для обезвоживания таких осадков могут найти применение лишь для вод с мутностью ³ 100 мг/л.

Для обезвоживания осадков, образующихся на станциях обезжелези-вания и умягчения подземных вод, следует использовать вакуум-фильтры и ленточные фильтр-прессы.

При использовании вакуум-фильтров следует применять аппараты со сходящим полотном, обеспечивающие возможность регенерации фильтрующей ткани.

16.8. Рекомендуется следующая технологическая схема механического обезвоживания гидроксидных осадков на фильтр-прессах (черт. 46).

Черт. 46. Технологическая схема обработки осадков
на камерном фильтр-прессе

1 - уплотнитель; 2 - дозатор ПАА; 3 - усреднитель-отстойник осадков из отстойников или осветлителей со взвешенным слоем осадка; 4 - усреднитель-отстойник промывных вод фильтровальных сооружений; 5 - насос; 6 - сборник осадка; 7 - дозатор флокулянтов и вспомогательных веществ; 8 - промежуточная емкость; 9 - нагревательный элемент; 10 - компрессор; 11 - монжус; 12 - камерный фильтр-пресс; 13 - транспортер; 14 - бункер; 15 - автосамосвал

Осадок из усреднителей-отстойников непосредственно или через промежуточную емкость поступает в уплотнители. С целью интенсификации процесса уплотнения в осадок перед уплотнителями следует вводить ПАА.

Уплотненный осадок перелавливают из уплотнителей в емкость для подготовки его к механическому обезвоживанию. В зависимости от вида осадка и способа его подготовки в емкость с помощью дозаторов могут подаваться известь, флокулянты и присадочные материалы. Помимо этого, емкость может быть оборудована системой подогрева осадка. Подготовленный к механическому обезвоживанию осадок отводится в монжус, откуда с помощью компрессора передавливается в камерный фильтр-пресс. Обезвоженный осадок с помощью транспортера через бункер удаляется автотранспортом с территории станции. Фильтрат после фильтр-прессов отводится в канализационные сети.

16.9. При использовании для механического обезвоживания гидроксидных осадков вакуум-фильтров монжус следует заменить плунжерными или шнековыми насосами.

16.10. В конструктивном отношении усреднители-отстойники должны обеспечивать возможность эффективного отведения осветленной воды и осадка на дальнейшую обработку.

16.11. Конструкции уплотнителей зависят от качества обрабатываемого осадка. Для осадков маломутных цветных вод следует стремиться, чтобы отношение диаметра и глубины уплотнителя составляло 1 : 2. С увеличением мутности исходной воды указанное отношение можно увеличивать, и при уплотнении осадков из вод с мутностью свыше 100 мг/л в качестве уплотнителей могут быть использованы радиальные отстойники диаметром до 18 м.

16.12. Подготовку уплотненного осадка к обезвоживанию можно осуществлять либо в специальной емкости, либо непосредственно в монжусе.

ПОДГОТОВКА ОСАДКА К МЕХАНИЧЕСКОМУ
ОБЕЗВОЖИВАНИЮ

16.13. Механическое обезвоживание осадков, образующихся на станциях обезжелезивания и умягчения подземных вод, следует осуществлять после их уплотнения без дополнительной подготовки.

16.14. Механическое обезвоживание гидроксидных осадков поверхностных природных вод следует осуществлять только после предварительной подготовки, обеспечивающей изменение их исходной физико-химической структуры.

16.15. Предварительная подготовка гидроксидных осадков к обезвоживанию может включать их уплотнение в сооружениях вертикального или радиального типа, коагуляцию химическими реагентами, добавление вспомогательных веществ, нагрев до 60—98 °С, замораживание-оттаивание.

П р и м е ч а н и я: 1. Замораживание-оттаивание следует предусматривать при подготовке к обезвоживанию осадков маломутных цветных и высокоцветных вод, обладающих наиболее низкой водоотдающей способностью.

2. Выбор температуры нагрева осадка следует осуществлять с учетом возможностей обезвоживающих аппаратов.

16.16. Уплотнение гидроксидных осадков маломутных цветных вод следует производить в уплотнителях вертикального типа, оборудованных устройствами для непрерывного нарушения структуры осадка.

Уплотнение осадков, полученных из поверхностных вод с мутностью свыше 100 мг/л, а также осадков, образующихся на станциях обезжелезивания и умягчения подземных вод, в зависимости от производительности станции можно осуществлять в уплотнителях вертикального или радиального типа.

Для предварительных расчетов при проектировании влажность уплотненного в течение 2 ч осадка Рупл следует принимать, %:

для осадка железосодержащих подземных вод — 97,0; при увеличении продолжительности уплотнения до 24 ч влажность уплотненного осадка снижается до 92—94;

для осадка, образующегося на станциях умягчения воды, — 92—94.

16.17. Для предварительных расчетов при проектировании влажность уплотненного осадка поверхностных вод Рупл , %, в зависимости от качественных показателей исходной воды можно определять по следующему выражению:

Рупл = 96,034 + 1,8 × 10-2 Ц - 3 × 10-2 М - 1,26 × 10-4 М2 , (66)

где Ц — цветность исходной воды, град;

М — мутность исходной воды, мг/л.

Продолжительность уплотнения осадков поверхностных вод следует принимать равной 6—10 ч в зависимости от качества осадков, причем с увеличением минеральных примесей в них продолжительность уплотнения снижается.

16.18. Для интенсификации процесса уплотнения в осадок добавляют ПАА из расчета 0,04 % массы сухого вещества осадка. Продолжительность уплотнения при этом следует принимать равной 2- 4 ч.

16.19. В качестве химических реагентов для коагуляции осадков перед их механическим обезвоживанием могут использоваться известь, минеральные железосодержащие коагулянты, флокулянты.

16.20. Известь при подготовке гидроксидных осадков к обезвоживанию может использоваться самостоятельно. Для предварительных расчетов дозу извести по СаО следует принимать для осадков вод, % массы сухих веществ обрабатываемого осадка:

повышенной мутности — 10-15;

средней цветности и мутности — 20-30;

маломутных средней цветности — 30-50;

маломутных высокоцветных — 60-100.

При этом доза извести возрастает с увеличением цветности и снижением мутности исходной воды.

16.21. Самостоятельное использование флокулянтов для подготовки гидроксидных осадков к механическому обезвоживанию возможно лишь при обезвоживании осадков вод повышенной мутности.

Флокулянты следует использовать для сокращения расхода извести. При этом для предварительных расчетов следует принимать дозу флокулянта 0,2 % по активной части от массы сухих веществ и дозу извести по СаО — 20 % для маломутных цветных вод и 15 % для вод средней цветности и мутности.

16.22. Для сокращения расхода извести при подготовке гидроксидных осадков к обезвоживанию можно использовать различные вспомогательные вещества, среди которых следует отметить золу-унос от сжигания торфа, угля и сланцев, диатомит, перлит, опилки, песчаную пыль и другие отходы.

Эффективность применения вспомогательных веществ необходимо подтвердить опытным путем. Обычно добавка вспомогательных веществ в количестве 50—100% массы сухих веществ осадка позволяет сократить расход извести в 2 раза.

Совместное использование вспомогательных веществ и флокулянтов позволяет полностью отказаться от применения извести при обезвоживании осадков, полученных из вод средней цветности и мутности.

16.23. При перекачке осадка перед обезвоживанием и особенно после коагуляционной и флокуляционной обработки во избежание разрушения его структуры не допускается использование центробежных насосов, их следует заменять плунжерными или шнековыми.


ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ
ПАРАМЕТРОВ
ПРОЦЕССА МЕХАНИЧЕСКОГО ОБЕЗВОЖИВАНИЯ ОСАДКОВ

16.24. Расчет уплотнителей следует осуществлять по максимальному часовому количеству осадка, образующемуся в период паводка, с учетом сокращения периода уплотнения в 2 раза по сравнению с указанным п. 16.17.

16.25. Расчет оборудования для обезвоживания осадка вод поверхностных источников следует вести, принимая во внимание среднегодовые показатели качества исходной воды.

16.26. На период паводка необходимо предусматривать создание аккумулирующей емкости для уплотненного осадка, который не может быть обезвожен на установленном оборудовании.

Аккумулирующую емкость следует оборудовать насосной станцией, обеспечивающей перекачку находящегося в ней осадка на обезвоживающие аппараты в период межени.

16.27. Основные параметры работы фильтр-прессов:

толщина слоя обезвоженного осадка на фильтровальной перегородке при обезвоживании на фильтр-прессах и вакуум-фильтрах барабанного типа должна быть Нос ³ 5 мм;

объем осадка, подаваемого в фильтр-пресс, - не менее общего объема камер, соответствующего паспортным данным;

удельный объем подаваемого осадка W исх ³ 0,04 м32 (применительно к фильтр-прессам типов ФПАКМ и ФПАВ) .

16.28. Производительность обезвоживающих аппаратов по сухому веществу осадка Q, кг/(м2 • ч), выраженная через массу твердой фазы осадка, может быть рассчитана по формуле

, (67)

где m тв — масса твердой фазы осадка, кг;

F — поверхность фильтрования, м;

t ц — продолжительность фильтроцикла, ч;

К — коэффициент запаса, учитывающий колебание свойств осадка и кольматацию фильтровальной перегородки, равный 0,6- 0,8.

Продолжительность фильтроцикла t ц , ч, при обезвоживании осадков на фильтр-прессах равна:

t ц = t ф + t отж + t всп , (68)

где t ф - продолжительность фильтрования, ч;

t отж - продолжительность отжима, ч;

t всп - продолжительность вспомогательных операций, включающая время заполнения камер осадком в объеме, равном объему камер фильтр-пресса, время выгрузки осадка и регенерации ткани и принимаемая по паспортным данным, ч.

Продолжительность фильтроцикла t ц , ч, при обезвоживании осадков на вакуум-фильтрах равна:

, (69)

где a ф - угол зоны фильтрования, град.

Масса твердой фазы осадка составляет

m тв = W исх Сисх , (70)

где W исх - объем исходного осадка, м3 ;

Cисх - концентрация исходного осадка, кг/м3 .

Подставляя значения из формул (68) - (70) в формулу (67), получим следующие зависимости для определения производительности:

фильтр-прессов

; (71)

вакуум-фильтров

. (72)

Если концентрацию исходного осадка в формулах (71) и (72) заменить влажностью исходного осадка, указанные зависимости соответственно принимают следующий вид:

; (73)

, (74)

где Рисх - влажность исходного осадка, %;

r исх - плотность исходного осадка, кг/м3 .

Производительность обезвоживающих аппаратов может быть определена также по объему выделившегося фильтрата и влажности исходного и обезвоженного осадков из следующего соотношения:

W исх (100 - Рисх ) = (W исх - W ф ) (100 - Рос ) , (75)

откуда . (76)

Подставив зависимость (76) в формулы (73) и (74), получим следующие выражения:

; (77)

. (78)

16.29. Давления фильтрования G ф и отжима Gотж , поддерживаемые при работе фильтр-прессов, определяются сжимаемостью обезвоживаемых осадков. Однако учитывая, что в процессе подготовки осадков к обезвоживанию значение сжимаемости обрабатываемых осадков приводят к определенному уровню, при проектировании могут быть приняты следующие значения давлений в зависимости от качества обрабатываемого осадка, которые будут корректироваться в процессе эксплуатации:

для осадков маломутных цветных и высокоцветных вод

G ф = 0,3- 0,4 МПа; Gотж = 0,8- 1,0 МПа;

для осадков вод средней цветности и мутности

G ф = 0,4- 0,5 МПа; Gотж = 1,0- 1,2 МПа;

для осадков вод повышенной мутности

G ф = 0,5 МПа; Gотж = 1,2 МПа;

16.30. Для предварительных расчетов при проектировании производительность вакуум-фильтров при обезвоживании осадков, образующихся на станциях обезжелезивания, следует принимать равной 80—100 кг/(м2 × ч), влажность обезвоженного осадка - 60—70 %.

При обезвоживании на вакуум-фильтрах осадков, образующихся при умягчении подземных вод, производительность следует принять равной 90- 120 кг/(м2 × ч), влажность обезвоженного осадка - 50- 60 %.

При обезвоживании гидроксидных осадков поверхностных природных вод производительность фильтр-прессов по сухому веществу следует принимать, кг/(м2 × ч), для осадков вод:

маломутных цветных - 3- 5;

средней цветности и мутности - 5—10;

повышенной мутности - 10—15.

При этом влажность обезвоженного осадка соответственно, %, для осадков вод:

маломутных цветных - 70—75;

средней цветности и мутности - 60—70;

повышенной мутности - 55—65.


Закрыть

Строительный каталог