СНиП 2.04.02-84 (с изм. 1 1986, попр. 2000), часть 15

4. Размеры отверстий фильтров без устройства гравийной обсыпки надлежит принимать по табл. 2.


Таблица 2



Размеры отверстий фильтров

Тип фильтра

в однородных

породах К Н £ 2

в неоднородных

породах К Н ³ 2

С круглой перфорацией

(2,5 ¸ 3)d 50

(3 ¸ 4)d 50

Сетчатый

(1,5 ¸ 2)d 50

(2 ¸ 2,25)d 50

С щелевой перфорацией

(1,25 ¸ 1)d 50

(1,5 ¸ 2)d 50

Проволочный

1,25d 50

1,5d 50


Примечания: 1. В табл. 2 К Н =d 60 /d 1C , где d 10 ; d 50 ; d 60 ¾ размеры частиц, меньше которых в породе водоносного пласта содержится соответственно 10, 50 и 60 % (определяется по графику гранулометрического состава).

2. Меньшие значения коэффициентов при d 50 относятся к мелкозернистым породам, большие ¾ к крупнозернистым.


5. Размеры отверстий фильтров при устройстве гравийной обсыпки должны приниматься равными среднему диаметру частиц слоя обсыпки, примыкающего к стенкам фильтра.

6. Скважность трубчатых фильтров с круглой или щелевой перфорацией должна быть 20—25 %, фильтров из проволочной обмотки или штампованного стального листа — не более 30—60 %.

7. В качестве обсыпки фильтров надлежит применять песок, гравий и песчано-гравийные смеси.

Подбор механического состава материалов обсыпок производится по соотношению



где D 50  — диаметр частиц, меньше которого в обсыпке содержится 50 %.

8. В многослойных гравийных фильтрах толщина каждого слоя обсыпки должна приниматься для фильтров:

собираемых на поверхности земли, не менее 30 мм;

создаваемых в забое скважины, не менее 50 мм.

9. Подбор механического состава материала при устройстве двух- и трехслойных гравийных обсыпок фильтров надлежит производить по соотношению



где D 1 и D 2  — средние диаметры частиц материала соседних слоев обсыпки.

10. При подборе гравийного материала фильтров надлежит выдерживать соотношение:

для блочных из пористого бетона или из пористой керамики


для клеевых


где D ср  — средний диаметр частиц гравия в блоке фильтра.

11. Материал, используемый для фильтров в скважинах, следует обеззараживать.



Приложение 3

Рекомендуемое


ОПРОБОВАНИЕ И РЕЖИМНЫЕ НАБЛЮДЕНИЯ

ВОДОЗАБОРОВ ПОДЗЕМНЫХ ВОД


1. Для установления соответствия фактического дебита водозабора подземных вод принятому в проекте надлежит предусматривать их опробование откачками.

2. Откачки должны производиться при двух понижениях: с дебитом, равным принятому в проекте, и на 25—30 % больше его.

3. Общая продолжительность откачек должна составлять 1—2 сут на каждое понижение после установления постоянного динамического уровня при заданном дебите.

В случае неустановившегося режима продолжительность откачки должна быть достаточной для установления закономерности снижения дебита при постоянном уровне или уровня при постоянном дебите.

4. В проектах водозаборов подземных вод должна предусматриваться режимная сеть наблюдательных скважин или водомерных постов (при каптаже родников) для наблюдения за уровнями, дебитом, температурой и качеством воды. При этом следует использовать эксплуатационные скважины и другие водозаборные сооружения, оборудованные по проекту с учетом производства по ним полного комплекса режимных наблюдений.

5. Конструкция наблюдательных скважин, их количество и расположение должны приниматься в соответствии с гидрогеологическими условиями, при этом наблюдательные скважины необходимо оборудовать фильтром диаметром 89—110 мм.

6. Глубина наблюдательных скважин должна приниматься из условия расположения:

в водоносном пласте со свободной поверхностью при глубине эксплуатационных скважин до 15 м фильтра на той же глубине, что и в эксплуатационных скважинах;

в водоносном пласте со свободной поверхностью при глубине эксплуатационных скважин более 15 м верха рабочей части фильтра на 2—3 м ниже возможного наинизшего динамического уровня в водоносном пласте;

в напорном водоносном пласте при динамическом уровне выше кровли пласта — рабочей части фильтра в верхней трети водоносного пласта; при осушении части пласта — верха фильтра на 2—3 м ниже динамического уровня,

в водоносных пластах, эксплуатация которых рассчитана на сработку статических запасов, — верха рабочей части фильтра на 2—3 м ниже положения динамического уровня к концу расчетного срока эксплуатации водозабора.

7. Глубину наблюдательных скважин на водозаборах из шахтных колодцев, лучевых и горизонтальных водозаборах надлежит принимать равной глубине заложения водоприемных частей водозаборов.

8. В наблюдательных скважинах верховодка и водоносные пласты, залегающие выше эксплуатационного водоносного пласта, должны быть изолированы.

9. При необходимости надлежит предусматривать устройство скважин для наблюдения за верхними неэксплуатируемыми водоносными пластами.

10. Для предохранения наблюдательных скважин от засорения верх фильтровой колонны или обсадной трубы должен быть закрыт крышкой.

11. На участках инфильтрационных водозаборов наблюдательные скважины надлежит размещать также между водозабором и поверхностным водотоком или водоемом и при необходимости на их противоположном берегу в зоне действия водозабора. При наличии очагов возможного загрязнения подземных вод в районе водозабора (мест сброса промышленных сточных вод, водоемов с высокоминерализованными водами, заболоченных торфяников и т.п.) между ними и водозаборами надлежит предусматривать дополнительные наблюдательные скважины.







Приложение 4

Рекомендуемое


УДАЛЕНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ,

ПРИВКУСОВ И ЗАПАХОВ


1. Для удаления органических веществ из воды, снижения интенсивности привкусов и запахов в качестве окислителей следует применять хлор, перманганат калия, озон или их комбинации. Вид окислителя и его дозу следует устанавливать на основании данных технологических изысканий. Ориентировочно дозы окислителей допускается принимать по табл. 1.


Таблица 1


Перманганатная

Доза окислителя, мг/л

окисляемость воды, мг О/л

хлора

перманганата калия

озона

8-10

4-8

2-4

1-3

10-15

8-12

4-6

3-5

15-25

12-14

6-10

5-8


2. Основные места ввода окислителей и последовательность введения реагентов надлежит принимать по табл. 2.


Таблица 2


Место ввода окислителей


Последовательность введения реагентов в воду


1. Хлор перед сорбционной очисткой


Хлорирование не менее чем за 2 мин до фильтрования через гранулированный активный уголь или введения порошкообразного активного угля


2. Озон непосредственно перед сорбционной очисткой

Озонирование с последующим фильтрованием через гранулированный активный уголь или обработкой порошкообразным активным углем


3. Хлор перед коагулированием

Первичное хлорирование, через 2—3 мин — коагулирование


4. Хлор и перманганат калия перед коагулированием

Первичное хлорирование, через 10 мин введение перманганата калия, через 2—3 мин — коагулирование



5. Озон перед коагулированием

Озонирование, последующее коагулирование



6. Хлор и озон перед коагулированием

Первичное хлорирование с дозой в пределах хлоропоглощаемости воды, через 0,5—1 ч — озонирование и последующее коагулирование


7. Озон перед осветлительными фильтрами или в очищенную воду




Примечание. Должна быть предусмотрена возможность изменения места ввода реагентов при эксплуатации сооружений.


Допускается введение частей дозы окислителей перед сооружениями разного типа.

3. При невозможности введения реагентов с требуемыми разрывами во времени в трубопроводы или в основные технологические сооружения должны быть предусмотрены специальные контактные камеры.

4. Применение озона и перманганата калия в хозяйственно-питьевом водоснабжении не исключает необходимости хлорирования очищенной воды для ее обеззараживания.

5. Гранулированный активный уголь следует применять в качестве загрузки сорбционных фильтров, располагаемых после осветлительных фильтров или других сооружений, обеспечивающих очистку воды от взвеси до 1,5 мг/л.

При обосновании допускается применять совмещенные осветлительно-сорбционные фильтры.

6. Высота угольной загрузки Н у.з , м, должна приниматься не менее



где v р.ф  — расчетная скорость фильтрования, принимаемая 10—15 м/ч;

t у  — время прохождения воды через слой угля, принимаемое 10—15 мин в зависимости от сорбционных свойств угля, концентрации и вида загрязнений воды и других факторов и уточняемое технологическими изысканиями.

7. Для загрузки сорбционных фильтров следует применять гранулированные активные угли марок АГ-З, АГ-М и др. с учетом требований п. 1.3.

Интенсивность промывки водой сорбционной загрузки фильтра следует принимать в зависимости от требуемого относительного расширения активного угля по табл. 3.


Таблица 3



Тип активного угля

Требуемая величина относительного расширения загрузки, %

Интенсивность промывки фильтров, л/(с × м2 )

Продолжительность промывки фильтров, мин

АГ-З

25

12 ¾ 14

8 ¾ 7


35

14 ¾ 16

7 ¾ 6


45

16 ¾ 18

6 ¾ 5

АГ-М

30

8 ¾ 9

12 ¾ 10


45

9—10

10—8


60

11 ¾ 12

8 ¾ 7


8. Расстояние от поверхности фильтрующей загрузки до кромок желобов надлежит определять согласно п. 6.113 и табл. 23.

9. Определение потери напора в сорбционном слое из активного угля, расчет и конструирование распределительной системы устройств для подачи промывной воды, желобов и других элементов сорбционных фильтров следует производить согласно пп. 6.103—6.112.

10. Порошкообразный активный уголь надлежит вводить в воду до коагулянта с интервалом времени не менее 10 мин. Дозу угля перед фильтрами следует принимать до 5 мг/л.

11. Транспортирование угольного порошка со склада реагента к установке приготовления угольной пульпы допускается осуществлять гидро- и пневмоспособами. При применении пневмоспособа установка транспортирования угольного порошка должна быть герметизирована и обеспечена средствами пожарной безопасности, местным противовзрывным клапаном и заземлена.

Для дозирования угольной пульпы следует предусмотреть замачивание угля в течение 1 ч в баках с гидравлическим или механическим перемешиванием. Насосы для перекачивания угольной пульпы должны быть стойкими к абразивному воздействию угля. Производительность циркуляционных насосов должна обеспечивать 4— 5-кратный обмен замачиваемого реагента в течение времени замачивания.

Концентрацию угольной пульпы следует принимать до 8 %.

12. Трубопроводы для подачи угольной пульпы надлежит рассчитывать при скорости движения пульпы не менее 1,5 м/с; на трубопроводах должны быть предусмотрены ревизии для прочистки, плавные повороты и уклоны согласно п. 6.38.

13. Конструкция дозаторов должна обеспечивать гидравлическое перемешивание пульпы при постоянном уровне ее в дозаторе.

14. Вместимость баков с мешалкой для приготовления раствора перманганата калия следует определять исходя из концентрации раствора реагента 0,5—2 % (по товарному продукту), при этом время полного растворения реагента следует принимать равным 4—6 ч при температуре воды 20 ° С и 2—3 ч при температуре воды 40 ° С.

15. Количество растворных или растворно-расходных баков для перманганата калия должно быть не менее двух (один резервный). Для дозирования раствора перманганата калия следует принимать дозаторы, предназначенные для работы на отстоенных растворах.



Приложение 5

Рекомендуемое


СТАБИЛИЗАЦИОННАЯ ОБРАБОТКА ВОДЫ,

ОБРАБОТКА ИНГИБИТОРАМИ ДЛЯ УСТРАНЕНИЯ КОРРОЗИИ СТАЛЬНЫХ И ЧУГУННЫХ ТРУБ


1. При отсутствии данных технологических анализов стабильность воды допускается определять по индексу насыщения карбонатом кальция J


(1)


где рН0  — водородный показатель, измеренный с помощью рН-метра;

рНs  — водородный показатель в условиях насыщения воды карбонатом кальция, определяемый по номограмме рис. 1, исходя из значений содержания кальция ССа , общего солесодержания Р, щелочности Щ и температуры воды t .

2. Для защиты металлических труб от коррозии и образования бугристых коррозионных отложений стабилизационную обработку воды следует предусматривать при индексе насыщения менее 0,3 более трех месяцев в году.

При определении необходимости стабилизационной обработки воды надлежит учитывать изменение ее качества в результате предшествующей обработки (коагулирования, умягчения, аэрации и т.п.).

3. Для вод, подвергаемых обработке минеральными коагулянтами (сернокислым алюминием, хлорным железом и т.п.), при подсчете индекса насыщения следует учитывать снижение рН и щелочности воды вследствие добавления в нее коагулянта.

Щелочность воды после коагулирования Щ К , мг-экв/л, следует определять по формуле


(2)


где Щ 0  — щелочность исходной воды (до коагулирования), мг-экв/л;

Д К —доза коагулянта в расчете на безводный продукт, мг/л;

е К  — эквивалентная масса безводного вещества коагулянта, мг/мг-экв, принимаемая согласно п. 6.19.

Количество свободной двуокиси углерода в воде после коагулирования следует определять по номограмме рис. 2 при известной величине рН коагулированной воды, а при неизвестном рН по формуле


(3)


где (СО2 )0 — концентрация двуокиси углерода в исходной воде до коагулирования, мг/л.

При известном значении (СО2 )св по номограмме рис. 2 определяется величина рН воды после обработки коагулянтом.

4. При положительном индексе насыщения для предупреждения зарастания труб карбонатом кальция воду следует обрабатывать

Рис. 1. Номограмма для определения рН насыщения воды карбонатом кальция (рНs )


Пример. Дано: ССа = 100 мг/л; Щ = 2 мг-экв/л; Р = 3 г/л; t = 40 ° С.

Ответ: рНs = 7,47


Рис. 2. Номограмма для определения концентрации свободной двуокиси углерода в природной воде (или рН)


Пример. Дано: рН = 7, Р = 1 г/л; Щ = 1 мг-экв/л; t = 80 ° С.

Ответ: (СО2 )св = 9,1 мг/л


кислотой (серной или соляной), гексаметафосфатом или триполифосфатом натрия.

Дозу кислоты Д кис , мг/л, (в расчете на товарный продукт) следует определять по формуле


(4)


где a кис  — коэффициент, определяемый по номограмме рис. 3;

Щ — щелочность воды до стабилизационной обработки, мг-экв/л;

е кис  — эквивалентная масса кислоты, мг/мг-экв (для серной кислоты — 49, для соляной кислоты — 36,5);

С кис  — содержание активной части в товарной кислоте, %.

Дозу гексаметафосфата или триполифосфата натрия (в расчете на Р2 О5 ) надлежит принимать:

для хозяйственно-питьевых водопроводов — не более 2,5 мг/л (3,5 мг/л в расчете на РО4 );

для производственных водопроводов — до 4 мг/л.


Рис. 3. Номограмма для определения коэффициента a кис

при расчете дозы кислоты


5. При отрицательном индексе насыщения воды карбонатом кальция для получения стабильной воды следует предусматривать ее обработку щелочными реагентами (известью, содой или этими реагентами совместно), гексаметафосфатом или триполифосфатом натрия.

Дозу извести следует определять по формуле


(5)


где Д и —доза извести, мг/л, в расчете на СаО;

b н  — коэффициент, определяемый по номограмме рис. 4 в зависимости от рН воды (до стабилизационной обработки) и индекса насыщения J ;

Кt  — коэффициент, зависящий от температуры воды: при t = 20 ° С Кt = 1, при t = 50 ° С Кt = 1,3;

Щ — щелочность воды до стабилизационной обработки, мг-экв/л.


Рис. 4. Номограмма для определения коэффициента b н

при расчете дозы щелочи


Дозу соды в расчете на2 СО3 , мг/л, надлежит принимать в 3—3,5 раза больше дозы извести в расчете на СаО, мг/л.

Если по формуле (5) доза извести Д н /28, мг-экв/л, получается больше величины d щ , мг-экв/л, определяемой по формуле


(6)


то в воду кроме извести в количестве d щ , мг-экв/л, следует вводить также соду, дозу которой Д с , мг/л, надлежит определять по формуле


(7)


Следует предусматривать возможность одновременно с введением щелочных реагентов дозировать гексаметафосфат или триполифосфат натрия дозой 0,5—1,5 мг/л (в расчете на Р2 О5 ) для повышения степени равномерности распределения защитной карбонатной пленки по длине трубопроводов.

При проектировании систем обработки воды гексаметафосфатом натрия или триполифосфатом натрия (без щелочных реагентов) для борьбы с коррозией стальных и чугунных труб производственных водопроводов следует предусматривать дозы этих реагентов 5—10 мг/л (в расчете на Р2 О5 ). Для хозяйственно-питьевых водопроводов дозы указанных реагентов не должны превышать 2,5 мг/л в расчете на Р2 О5 .

В случаях обработки воды гексаметафосфатом или триполифосфатом натрия без щелочных реагентов при вводе в эксплуатацию участков новых трубопроводов для снижения интенсивности коррозии следует предусматривать заполнение их на 2—3 сут раствором гексаметафосфата или триполифосфата натрия концентрацией 100 мг/л (в расчете на Р2 О5 ) с последующим сбросом этого раствора и промывкой трубопроводов водой с дозами указанных реагентов (в расчете на Р2 О5 ): 5—10 мг/л — для производственных водопроводов и 2,5 мг/л — для хозяйственно-питьевых водопроводов.

6. Приготовление растворов гексаметафосфата и триполифосфата натрия для обработки воды должно производиться в растворорасходных баках с антикоррозионной защитой. Концентрацию растворов надлежит принимать от 0,5 до 3 % в расчете на товарные продукты, при этом продолжительность растворения с применением механических мешалок или сжатого воздуха — 4 ч при температуре воды 20 ° С и 2 ч при температуре 50 ° С.

7. При стабилизационной обработке воды следует предусматривать возможность введения щелочных реагентов в смеситель, перед фильтрами и в фильтрованную воду перед вторичным хлорированием.

При введении реагента перед фильтрами и в фильтрованную воду должна быть обеспечена высокая степень очистки щелочных реагентов и их растворов. Приготовление известкового молока и раствора соды и их дозирование следует предусматривать согласно пп. 6.34—6.39

Введение щелочных реагентов перед смесителями и фильтрами допускается производить в тех случаях, когда это не ухудшает эффекта очистки воды (в частности, снижения цветности).

8. Для формирования защитной пленки карбоната кальция на внутренней поверхности трубопровода в первый период его эксплуатации надлежит предусматривать возможность увеличения доз щелочных реагентов по сравнению с определяемыми по формулам (6) и (7) в два раза, а в дальнейшем длительно на 10—20 % больше определяемой по тем же формулам.

9. Уточнение доз щелочных реагентов, а также продолжительности периода формирования защитной карбонатной пленки производится в процессе эксплуатации трубопровода на основе проведения технологических и химических анализов воды, а также наблюдений за индикаторами коррозии. Этими наблюдениями определяется также целесообразность поддержания небольшого пересыщения воды карбонатом кальция после начального периода формирования защитной карбонатной пленки на стенках труб.

10. При формировании защитной карбонатной пленки в трубопроводах систем хозяйственно-питьевого водоснабжения значение рН обработанной щелочными реагентами воды не должно превышать величины, допускаемой ГОСТ 2874—82.

11. Проектирование стабилизационной обработки маломинерализованных вод с содержанием кальция менее 20—30 мг/л и щелочностью 1—1,5 мг-экв/л следует производить только на основе предпроектных технологических изысканий. При необходимости повышения концентраций в воде кальция Са2+ и гидрокарбонатов (НСО3 ) следует предусматривать совместную обработку воды двуокисью углерода (СО2 ) и известью.



Приложение 6

Рекомендуемое


ФТОРИРОВАНИЕ ВОДЫ


1. В качестве реагентов для фторирования воды следует применять кремнефтористый натрий, фтористый натрий, кремнефтористый аммоний, кремнефтористоводородную кислоту.


Примечание. При обосновании допускается по согласованию с Главным санитарно-эпидемиологическим управлением Минздрава СССР применение других фторсодержащих реагентов.


2. Дозу реагентов Д ф , г/м3 надлежит определять по формуле


(1)


где m ф  — коэффициент, зависящий от места ввода реагента в обрабатываемую воду, принимаемый при вводе в чистую воду — 1, при вводе перед фильтрами при двухступенчатой очистке воды — 1,1;

а ф  — необходимое содержание фтора в обрабатываемой воде в зависимости от климатического района расположения населенного пункта, устанавливаемое органами санитарно-эпидемиологической службы, г/м3 ;

Ф — содержание фтора в исходной воде, г/м3 .

К ф  — содержание фтора в чистом реагенте, %, принимаемое для натрия кремнефтористого — 61, для натрия фтористого — 45, для аммония кремнефтористого — 64, для кислоты кремнефтористоводородной — 79;

С ф  — содержание чистого реагента в товарном продукте, %.

3. Ввод фторсодержащих реагентов надлежит предусматривать, как правило, в чистую воду перед ее обеззараживанием. Допускается введение фторсодержащих реагентов перед фильтрами при двухступенчатой очистке воды.

4. При использовании кремнефтористого натрия следует принимать технологические схемы с приготовлением ненасыщенного раствора реагента в расходных баках или насыщенного раствора реагента в сатураторах одинарного насыщения.

При применении фтористого натрия, кремнефтористого аммония и кремнефтористоводородной кислоты следует принимать технологические схемы с приготовлением, ненасыщенного раствора в расходных баках.

Для порошкообразных реагентов допускается применение схем с сухим дозированием реагентов.

5. Производительность сатуратора q с , л/ч (по насыщенному раствору реагента), следует определять по формуле


(2)


где q с  — расход обрабатываемой воды, м3 /ч;

n с  — количество сатураторов;

Р ф  — растворимость кремнефтористого натрия, г/л, составляющая при температуре 0 ° С — 4,3; 20 ° С — 7,3; 40 ° С — 10,3.

При определении объема сатураторов время пребывания в них раствора следует принимать не менее 5 ч, скорость восходящего потока воды в сатураторе — не более 0,1 м/с.

6. Концентрацию раствора реагента при приготовлении ненасыщенных растворов в расходных баках следует принимать: для кремнефтористого натрия — 0,25 % при температуре раствора 0 °С и до 0,5% при 25 °С; фтористого натрия — 2,5 % при 0 °С; кремнефтористого аммония — 7 % при 0 °С; кремнефтористоводородной кислоты — 5 % при 0 °С.

Перемешивание раствора следует производить с помощью механических мешалок или воздуха.

Интенсивность подачи воздуха надлежит принимать 8—10 л/(с × м2 ).

7. Растворы фторсодержащих реагентов должны быть перед использованием отстоены в течение 2 ч.

8. При применении схемы с использованием дозаторов сухого реагента необходимо предусматривать специальную камеру для смешения с водой и растворения отдозированного реагента.

Перемешивание раствора в камере следует предусматривать с помощью гидравлических или механических устройств. При этом концентрацию раствора в камере рекомендуется принимать до 25 % растворимости реагента при данной температуре, а минимальное время пребывания раствора в камере 7 мин.

9. При применении в качестве реагента кремнефтористого натрия, кремнефтористого аммония и кремнефтористоводородной кислоты следует предусматривать мероприятия против коррозии баков, трубопроводов и дозаторов.

10. Фторсодержащие реагенты следует хранить на складе в заводской таре.

Кремнефтористоводородную кислоту следует хранить в баках с выполнением мероприятий, предотвращающих ее замерзание.

11. Помещение фтораторной установки и склада фторсодержащих реагентов должно быть изолировано от других производственных помещений.

Места возможного выделения пыли должны быть оборудованы местными отсосами воздуха, а растаривание кремнефтористого натрия и фтористого натрия должно производиться под защитой шкафного укрытия.

12. При применении фторсодержащих реагентов, учитывая их токсичность, необходимо предусматривать общие и индивидуальные мероприятия по защите обслуживающего персонала.



Приложение 7

Рекомендуемое


УМЯГЧЕНИЕ ВОДЫ


1. Количество воды, подлежащей умягчению, q у , выраженное в процентах общего количества воды, следует определять по формуле


(1)


где Ж о.исх  — общая жесткость исходной воды, мг-экв/л;

Ж ос  — общая жесткость воды, подаваемой в сеть, мг-экв/л;

Ж у — жесткость умягченной воды, мг-экв/л.


Реагентная декарбонизация воды

и известково-содовое умягчение


2. В составе установок для реагентной декарбонизации воды и известково-содового умягчения следует предусматривать: реагентное хозяйство, смесители, осветлители со взвешенным осадком, фильтры и устройства для стабилизационной обработки воды.

В отдельных случаях (см. п. 8) вместо осветлителей со взвешенным осадном могут применяться вихревые реакторы.

3. При декарбонизации остаточная жесткость умягченной воды может быть получена на 0,4—0,8 мг-экв/л больше некарбонатной жесткости, а щелочность 0,8—1,2 мг-экв/л; при известково-содовом умягчении - остаточная жесткость 0,5—1 мг-экв/л и щелочность 0,8— 1,2 мг-экв/л. Нижние пределы могут быть получены при подогреве воды до 35—40 ° С.

4. При декарбонизации и известково-содовом умягчении воды известь надлежит применять в виде известкового молока. При суточном расходе извести менее 0,25 т (в расчете на СаО) известь допускается вводить в умягчаемую воду в виде насыщенного известкового раствора, получаемого в сатураторах.

5. Дозы извести Д и , мг/л, для декарбонизации воды, считая по СаО, надлежит определять по формулам:

а) при соотношении между концентрацией в воде кальция и карбонатной жесткостью (Са2+ )/20 > Ж к


(2)


б) при соотношении между концентрацией в воде кальция и карбонатной жесткостью (Са2+ )/20 < Ж к


(3)


где (СО2 ) — концентрация в воде свободной двуокиси углерода, мг/л;

(Са2+ ) — содержание в воде кальция, мг/л;

Д к  — доза коагулянта FeCl3 или FeSO4 (в расчете на безводные продукты), мг/л;

е к  — эквивалентная масса активного вещества коагулянта, мг/мг-экв (для FеСl3  —54, для FeSO4 ¾ 76).

6. Дозы извести и соды при известково-содовом умягчении воды следует определять по формулам:

доза извести Д и , мг/л, в расчете на СаО


(4)


доза соды Д с , мг/л, в расчете на Na 2 CO 3


(5)


где (Mg 2+ ) содержание в воде магния, мг/л;

Ж н.к  — некарбонатная жесткость воды, мг-экв/л.

7. В качестве коагулянтов при умягчении воды известью или известью и содой следует применять хлорное железо или железный купорос.

Дозы коагулянта в расчете на безводные продукты FeCI 3 или FeSO 4 надлежит принимать 25— 35 мг/л с последующим уточнением в процессе эксплуатации водоумягчительной установки.

8. При обосновании допускается производить декарбонизацию или известково-содовое умягчение воды в вихревых реакторах с получением крупки карбоната кальция и ее обжигом в целях утилизации в качестве извести-реагента.

Умягчение воды в вихревых реакторах следует принимать при соотношении (Са2+ )/20 мг/л > Ж к , содержании магния в исходной воде не более 15 мг/л и перманганатной окисляемости не более 10 мг О/л.

Окончательное осветление воды после вихревых реакторов следует производить на фильтрах.

9. Для расчета вихревых реакторов следует принимать: скорость входа в реактор 0,8—1 м/с; угол конусности 15—20°; скорость восходящего движения воды на уровне водоотводящих устройств 4—6 мм/с. В качестве контактной массы для загрузки вихревых реакторов следует применять молотый известняк, размолотую крупку карбоната кальция, образовавшуюся в вихревых реакторах, или мраморную крошку.

Крупность зерен контактной массы должна быть 0,2—0,3 мм, количество ее — 10 кг на 1 м3 объема вихревого реактора. Контактную массу надлежит догружать при каждом выпуске крупки из вихревого реактора.

Известь следует вводить в нижнюю часть реактора в виде известкового раствора или молока. При обработке воды в вихревых реакторах коагулянт добавлять не следует.


Примечание. При (Са2+ )/20 < Ж к декарбонизацию воды следует производить в осветителях с доосветлением воды на фильтрах.


10. Для выделения взвеси, образующейся при умягчении воды известью, а также известью и содой, следует применять осветлители со взвешенным осадком (специальной конструкции).

Скорость движения воды в слое взвешенного осадка следует принимать 1,3—1,6 мм/с, вода после осветлителя должна содержать взвешенных веществ не более 15 мг/л.

11. Фильтры для осветления воды, прошедшей через вихревые реакторы или осветлители, следует загружать песком или дробленым антрацитом с крупностью зерен 0,5—1,25 мм и коэффициентом неоднородности 2—2,2. Высота слоя загрузки 0,8—1 м, скорость фильтрования — до 6 м/ч.

Допускается применение двухслойных фильтров.

Фильтры надлежит оборудовать устройствами для верхней промывки.


Натрий-катионитный метод

умягчения воды


12. Натрий-катионитный метод следует применять для умягчения подземных вод и вод поверхностных источников с мутностью не более 5—8 мг/л и цветностью не более 30 ° . При натрий-катионировании щелочность воды не изменяется.

13. При одноступенчатом натрий-катионировании общая жесткость воды может быть снижена до 0,05—0,1 г-экв/м3 , при двухступенчатом —до 0,01 г-экв/м3 .

14. Объем катионита W к , м3 в фильтрах первой ступени следует определять по формуле


(6)


где q у  — расход умягченной воды, м3 /ч;

Ж о.исх — общая жесткость исходной воды, г-экв/м3 ;

 — рабочая обменная емкость катионита при натрий-катионировании; г-экв/м3

n р —число регенераций каждого фильтра в сутки, принимаемое в пределах от одной до трех.

15. Рабочую обменную емкость катионита при натрий-катионировании , г-экв/м3 следует определять по формуле

(7)


где a Na  — коэффициент эффективности регенерации натрий-катионита, учитывающий неполноту регенерации катионита, принимаемый по табл. 1;

Закрыть

Строительный каталог